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1 Introduction

The concept of soliton has appeared in the study of the famous KdV equation [1, 2] as a

wave solution which is localised in space and time, that keeps its shape during propagation

and when undergoing scattering processes. These features led to the interpretation of

solitons as particle-like objects even as classical fields.

Soliton solutions are commonly found in integrable field theories [3, 4] and their sta-

bility is associated to the existence of infinitely many conservation laws [5]. How to extend

the concept of integrability for higher dimensional space-times so that one can use in this

context all the very robust and powerful algebraic techniques [6] in the construction of

soliton solutions as it is done in low dimensions is yet to be understood [7]. Nonethe-

less, the nonperturbative treatment of field theories in higher dimensions leads to solutions

which share many of the features of solitons [8] having their stability now defined by the

topological character of the field; these are the topological solitons [9].

As a fundamental ingredient, a topological soliton has a topological charge which in

some models is defined as the pullback of the volume form of the target space into the space

manifold. This quantity, by construction, is completely defined by the topological data,

which is determined by the behavior of the field at the boundary of space. This is a crucial

criterium for the finiteness of the energy, which is the basic feature of the solitonic solution.
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In some theories one may find through the Bogomolny bound [10] a crucial relation between

the topological degree and the static energy; not only that, but also one finds a simpler

static equation which determines the configuration with least possible energy, known as

the BPS state.

Here we discuss two models which have BPS states derived from a class of models

recently proposed [11] by Ferreira, Klimas and Zakrzewski, which are referred here as FKZ

models. They are relativistic theories for a real scalar field multiplets in 1 + 1 dimensional

space-time where the target or field space is defined to be that of the roots of the Lie

algebras, which here are taken to be g2 and su(4) respectively. In section 2 we briefly

review the formulation of the generalized BPS equations which leads to the construction

of the FKZ models, described in the same section. Then, in section 3 we discuss the

construction of the model for the algebra g2 and present some of its BPS states obtained

numerically. In doing so, we analyse some aspects of the potential and some important

features which are presented in this type of model, such as the existence of an infinite

number of BPS states and the possibility of finding interesting submodels. In section 4 we

discuss the construction of the FKZ model based on the su(4) algebra. This is a model

for a scalar triplet; while in [11] algebras of rank 2 only were considered, here we show a

FKZ model for a rank 3 algebra. In this case, we have found the possibility of a continuous

vacuum manifold, which does not occured for the rank 2 algebras based FKZ models.

2 A review of the generalized BPS equation and the FKZ models

2.1 The generalization of the BPS equation for scalar field multiplets

The so called BPS equations [10, 12] are of great importance in the construction of static

solitonic solutions in many different nonlinear topological field theories, in the context of

vortices [13], monopoles [14] and domain walls. The remarkable feature of these equations

lies on the fact that they are of first order with respect to spatial derivatives and they imply

the usual second order static equations of the theory.1 Not only that but configurations

which satisfy the BPS equations, the so called BPS states, are those for which the energy

has the least possible value, being proportional to the topological degree of the field [9].

The establishment of the BPS equation follows the procedure known as the “Bogomolny

trick”, consisting essentially of a rewriting of the static energy such that a relation between

the first derivative of the field and the field itself appears explicitly.

Some years ago some aspects of the BPS equation were discussed in [15]. The authors

argued that the BPS equation is the condition that a field configuration must satisfy in

order to be both topological, i.e. to have a topological charge associated to it, and to

leave a specific functional of the field and its first derivatives (which can coincide with

the static energy functional of that theory) stationary. This observation leads not only

to a satisfactory explanation on why the “Bogomolny trick” works but also it gives a

fundamental recipe to the construction of new BPS models [16–18].

1Which is assumed here to be described by a lagrangian that has terms that, at most, depend on the

first derivatives of the field.
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In 1+1 dimensional space, for a single real scalar field φ, the argument goes as follows.

One starts by considering the quantities A(φ, φ′) and Ã(φ, φ′) which are functions of the

field φ and its spatial derivative φ′ ≡ dφ
dx . Then, it is claimed that the solution of the static

equation of motion is a configuration which leaves the functional

E =
1

2

∫ +∞

−∞
dx
(
A2 + Ã2

)
(2.1)

stationary at first order under variations of the field φ→ φ+ δφ with δφ = 0 at x = ±∞.

The stationarity of E imposes a condition on the functions A and Ã which is

A
δA

δφ
− d

dx

(
A
δA

δφ′

)
+ (A↔ Ã) = 0. (2.2)

Next, one also assumes that there is a quantity associated to the field configuration

defined as

Q =

∫ +∞

−∞
dx AÃ (2.3)

which remains unchanged under this same kind of variation. The invariance of Q under

these tranformations of the field implies the following conditions over A and Ã:

Ã
δA

δφ
− d

dx

(
Ã
δA

δφ′

)
+ (A↔ Ã) = 0. (2.4)

It is then not difficult to see that the relation

A = ±Ã (2.5)

defines a compatibility condition between equations (2.2) and (2.4). This is a relation

between φ′ and φ, recognised as the BPS equation associated to the theory described by

the lagrangian

L =
1

2
∂µφ∂

µφ− U(φ), (2.6)

if one defines

A =
dφ

dx
and Ã ≡ dW

dφ
=
√

2U , (2.7)

thus E is equivalent to the static energy

E =

∫ +∞

−∞
dx

(
1

2

(
dφ

dx

)2

+ U

)
(2.8)

and

Q =

∫ +∞

−∞

dφ

dx

dW

dφ
= W (φ(+∞))−W (φ(−∞)) (2.9)

has clearly a topological character, depending only on the value of the function W referred

to as the prepotential, evaluated on the values of the field at spatial infinity, which defines

the topological data of the model.
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Moreover, from (2.1), one can easily see how the usual “Bogomolny trick” is performed,

giving rise to both, the BPS equation and the minimum energy value, equal to the above

defined topological charge Q:

E =
1

2

∫ +∞

−∞
dx
(
A∓ Ã

)2
±Q ≥ Q. (2.10)

Next, one can extend this construction to a multiplet of scalar fields with components

φa ∈ R, a = 1, 2, . . . , n in a field space with metric ηab, described by the lagrangian

L =
1

2
ηab∂µφa∂

µφb − U . (2.11)

For constant metric components the dynamical equation of this model reads

ηab∂µ∂
µφb +

∂U
∂φa

= 0. (2.12)

Through an analogous procedure as done before for a single field, one defines [15] the

functionals Q and E as

Q =

∫ +∞

−∞
dx AaÃa and E =

1

2

∫ +∞

−∞
dx
(
A2
a + Ã2

a

)
(2.13)

where now A and Ã are vectors in field space defined as

Aa = kab
dφb

dx
Ãa =

∂W

∂φb
k−1ba (2.14)

with the matrix k being related to the field space metric ηab by η = kTk and the prepotential

W given in terms of the potential energy density U by

U =
1

2
η−1ab

∂W

∂φa

∂W

∂φb
. (2.15)

The BPS equation for this theory is defined as the compatibility condition for the

stationarity of the functional E and the invariance of Q under local variations of the field,

and it reads
dφa
dx

= η−1ab
∂W

∂φb
. (2.16)

The BPS solutions thus have topological charge defined by

Q =

∫ +∞

−∞
dφ · ∇φW = W (φ(+∞))−W (φ(−∞)) (2.17)

where ∇φW stands for the gradient of the prepotential in field space: (∇φW )a = ∂W
∂φa

.

The BPS states are those which interpolate between vacua of the theory with least

possible energy, the vacua being then defined by the minima of the potential. In terms of

the prepotential, the vacua are characterized by its points of extrema [11], either maxima

or minima:
∂W

∂φa
= 0. (2.18)
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The static field configuration φ(x) can be seen as a path in the field space parameterized

by the coordinate x. Then, va ≡ dφa
dx is the velocity vector of this path, tangent to it

everywhere. The BPS equation (2.16) can thus be written as

v = ±∇ηW (2.19)

where (∇ηW )a ≡ η−1ab
∂W
∂φb

, following [11] is called the η-gradient of W . Thus, the BPS

equation as written above tell us that the vector that is tangent to the BPS state is equal,

at each point, to the η-gradient of the prepotential W , that is, each solution to the BPS

equations is given by a path following the η-gradient lines of W .

The paths of BPS states never intersect each other since this would mean that the

η-gradient of W is multivalued. The η-gradient lines can at most meet tangentially or

converge to points where ∇ηW = 0, i.e. the vacua of the potential energy density U are

sources or sinks of η-gradient lines. Since the finite energy BPS states start and finish at

vacua points, this means that the paths they describe in field space connect a source to

a sink of η-gradient lines. This fact implies that the prepotential W varies monotonically

across the path of a given configuration.

2.2 The FKZ models

The ideas very briefly reviewed above were first discussed in [15] and applied in the study

of different models since then. The method that leads to the generalization of the BPS

equation is quite general and not only gives an explanation to the existense of some known

BPS equations but also can be used in a straightforward manner in formulating new field

theoretical BPS models. In this section we shall review a class of such models, refered to

here as the FKZ models, introduced recently by Ferreira, Klimas and Zakcrzewski in [11].

In this construction, the scalar multiplet ϕ = (φ1, . . . , φr) is defined in the space

spanned by the simple roots αa, a = 1, . . . , r of a given Lie algebra g of rank r:

ϕ ≡
r∑

a=1

φa
2 αa
‖αa‖2

. (2.20)

The field space metric ηab is then defined by the Cartan matrix Kab = 2αa·αb
‖αb‖2

of g:

ηab =
2Kab

‖αa‖2
. (2.21)

The construction of these models is based on the prepotential W , from where the

potential is defined using (2.15). In the case of the FKZ models, W is a scalar in the space

of simple roots. One chooses a representation R of g with weights µk and defines

W ≡
∑
µk∈R

Cµk e
iµk·ϕ. (2.22)

For a real prepotential, that is, W = W ∗, one considers representations satisfying

µk ∈ R ⇔ −µk ∈ R with which it is possible to write

W =
∑

µk∈R(+)

(
Cµk e

iµk·ϕ + C−µk e
i(−µk)·ϕ

)
(2.23)
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where R(+) stands for the fact that only one weight µk out of each pair (µk,−µk) ∈ R is

considered.2 And so the reality condition implies that the coefficients have to satisfy Cµk =

C∗−µk . Defining Cµk ≡ 1
2 (γµk − iδµk), such that γ, δ ∈ R and γµk = γ−µk , δµk = −δ−µk

then one finally has

W =
∑

µk∈R(+)

[γµk cos(µk · ϕ) + δµk sin(µk · ϕ)] . (2.24)

This expression gives the general form of the prepotential for the FKZ models, as

presented in [11]. These theories can become fairly complicated very fast. One allows itself

a bit of simplification and considers only models for which δµk = 0, i.e., only prepotentials

of the form

W =
∑

µk∈R(+)

γµk cos(µk · ϕ). (2.25)

Even with this restriction the models that emerge are very rich. The potential for these

theories will have the general form given in (2.15) with

∂W

∂φa
= −2

µk · αa
‖αa‖2

∑
µk∈R(+)

γµk sin

(
2
∑
b

φb
µk · αb
‖αb‖2

)
. (2.26)

Further, the vacua will satisfy equation (2.18), that in this case reads

µk · αa
‖αa‖2

∑
µk∈R(+)

γµk sin

(
2
∑
b

φb
µk · αb
‖αb‖2

)
= 0. (2.27)

The vacuum manifold structure will be, in general, very complex and depend heavily on

the values of the constants γk. In particular, the points

φa = naπ, (2.28)

for na ∈ Z, will always be in the vacuum set since from Lie algebra theory one has that

the weights µk always satisfy 2µk·αa

‖αa‖2 = mka, where mka ∈ Z, so that

sin

(
2π
∑
a

mkana

)
= 0, (2.29)

as the sum of integers is an integer. Other types of vacua, that rely on further properties

of Lie algebra theory are discussed in [11].

In [11] the authors present models based on the algebras su(2), su(3) and so(5). Here

we shall discuss the cases for the algebras g2 and su(4), theories with two and three fields,

respectively, and some of their static solutions.

2Notice that if the representation has weights with value zero that would only add a constant in the

prepotential and since we are only interested in derivatives — or differences — of the prepotential, we can

always ignore additive constants.
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3 The FKZ model for the algebra g2

3.1 The construction of the model

The algebra g2 is of rank r = 2 and following the FKZ prescription, it is suitable for the

description of scalar doublet with components φ1 and φ2:

ϕ = φ1
2α1

‖α1‖2
+ φ2

2α2

‖α2‖2
. (3.1)

The Cartan matrix of this algebra is given by

K =

(
2 −1

−3 2

)
. (3.2)

Using the fact that the norms of the simple roots satisfy ‖αa‖2
‖αb‖2

= Kab
Kba

, we choose the

normalization ‖α1‖2 = 1 and ‖α2‖2 = 3, so that the matrix of the field space reads

η =

(
4 −2

−2 4/3

)
. (3.3)

The next step in the construction of the model is to choose a representation for this

algebra. A good starting point is to consider the fundamental representations, i.e., repre-

sentations for which the highest weight is a fundamental one. For an algebra of rank r, the

fundamental weights are given by

λa =
r∑
b=1

K−1ab αb (3.4)

where K−1 is the inverse of the Cartan matrix. In the case of g2, there are two fundamental

weights

λ1 = 2α1 + α2 and λ2 = 3α1 + 2α2. (3.5)

The first fundamental representation, i.e., the representation with highest weight λ1, has

the following weights

µ1 = λ1 = 2α1 + α2

µ2 = λ1 − α1 = α1 + α2

µ3 = λ1 − α1 − α2 = α1

µ4 = λ1 − 2α1 − α2 = 0 (3.6)

µ5 = λ1 − 3α1 − α2 = −α1 = −µ3
µ6 = λ1 − 3α1 − 2α2 = −α1 − α2 = −µ2
µ7 = λ1 − 4α1 − 2α2 = −2α1 − α2 = −µ1

and they already satisfy the requirement for the reality of the prepotential W .

– 7 –
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In order to calculate the internal products µk · ϕ, which are passed as arguments for

the cosines in the prepotential, one uses the orthogonality relation between simple roots

and the fundamental weights, 2λa·αb
‖αb‖2

= δab, obtaining

µ1 · ϕ =
∑
a

φa
2λ1 · αa
‖αa‖2

=
∑
a

φaδ1a = φ1

µ2 · ϕ =
∑
a

φa
2(λ1 − α1) · αa
‖αa‖2

= φ1 −K11φ1 −K12φ2 = −φ1 + φ2 (3.7)

µ3 · ϕ =
∑
a

φa
2(λ1 − α1 − α2) · αa

‖αa‖2
= φ1 −K11φ1 −K12φ2 −K21φ1 −K12φ2 = 2φ1 − φ2

and finally the prepotential reads

W = γ1 cosφ1 + γ2 cos(φ1 − φ2) + γ3 cos(2φ1 − φ2). (3.8)

The components of the gradient of W in field space are

∂W

∂φ1
= −γ1 sinφ1 − γ2 sin(φ1 − φ2)− 2γ3 sin(2φ1 − φ2)

∂W

∂φ2
= γ2 sin(φ1 − φ2) + γ3 sin(2φ1 − φ2). (3.9)

and the potential becomes

U(φ) =
1

2

[(
∂W

∂φ1

)2

+ 3
∂W

∂φ1

∂W

∂φ2
+ 3

(
∂W

∂φ2

)2
]

=
1

2

[
γ21 sin2 (φ1) + γ22 sin2 (φ1 − φ2) + γ23 sin2 (2φ1 − φ2)− γ2γ1 sin (φ1) sin (φ1 − φ2)

+γ3 sin (2φ1 − φ2) (γ1 sin (φ1) + γ2 sin (φ1 − φ2))
]
. (3.10)

3.2 BPS solutions

The first step in determining the BPS solutions of this model is the definition of the vacua

of the potential, which are given by the critical points of the prepotential, that is, the

points ϕ0 = (φ1, φ2) which satisfy

γ1 sinφ1 + γ2 sin(φ1 − φ2) + 2γ3 sin(2φ1 − φ2) = 0

γ2 sin(φ1 − φ2) + γ3 sin(2φ1 − φ2) = 0. (3.11)

This set will depend on the choice of the parameters γi. For the particular choice γi = 1,

i = 1, 2, 3, the vacua are

ϕ0 =


(n1π, n2π)

(2π3 + 2πn1, 2πn2)

(4π3 + 2πn1, 2πn2)

(3.12)

where n1, n2 ∈ Z. In figure 1 we present the plots of the above potential and prepotential

for this choice of γi.

– 8 –
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(a) The plot of the potential given in (3.10). (b) The plot of the prepotential defined in (3.8).

Figure 1. The plots of the potential and of the prepotential for the g2 algebra FKZ model. The

corresponding discrete vacua are defined at the points on the plane φ1 − φ2 with white dots. The

vacua are seen to be localised at the points of extremum of the prepotential which always correspond

to points of minima of the potential.

The BPS equations for the model then read

dφ1
dx

= ±1

2
[−2γ1 sinφ1 + γ2 sin(φ1 − φ2)− γ3 sin(2φ1 − φ2)] (3.13)

dφ2
dx

= ±1

2
[−3γ1 sinφ1 + 3γ2 sin(φ1 − φ2)] . (3.14)

These equations must be solved numerically and some results for the choice3 γi = 1,

for i = 1, 2, 3 are presented in what follows.

The numerical solution was based on a discretisation of the system of differential

equations (3.13) and the spatial evolution of the field value is considered using the Runge-

Kutta 4 scheme in both directions x → ±∞ from an initial point ϕ(0) = (φ1(0), φ2(0))

which is not one of the points of vacua. The flow of the η-gradient is then uniquely defined

and we should get a non-trivial configuration which connects two vacua of the potential

passing through ϕ(0). The mesh discretization is considered to the order of 10−5 and

in order to establish a criterium for the accuracy of the solution we have looked at the

difference between the value of the static energy of the numerical solution and the value

of the topological charge which can be obtained theoretically. For all the cases presented

here these values matched within the precision of 10−10.

In figure 2 we have particular solutions of the BPS equations obtained for different

initial conditions ϕ(0) which are close to each other. The solution in figure 2a was con-

structed from ϕ(0) = (5, 7), i.e., as explained above, it is a solution which interpolates two

vacua and passes through the point ϕ(0). The vacua are then chosen by the evolution of

the equation. Here we observe that while for the field φ1 we have the usual kink profile as

a BPS state, for φ2 one finds a single bump. If analysing the two profiles independently,

3Different values for these parameters were also considered, however, we observed that the general

properties of the solutions did not differ too much from model to model.
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(a) . (b) .

Figure 2. Two numerically calculated BPS states of the model with γi = 1.
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(a) The energy density for the solution shown in

figure 2a.
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(b) The energy density for the solution shown in

figure 2b.

Figure 3. The energy density of the solitonic solution is localised as expected for such an object.

The two solutions presented in figures 2a and 2b have quite similar associated energy densities.

one could have the misleading impression that φ2 is topologically trivial. Nevertheless it

is important to reinforce the idea that the two fields must not be taken separately, as they

are just components of the fundamental field ϕ. It is the doublet that contains the topo-

logical features of the field and any other relevant physical information. Moreover, note

that the configuration as a whole interpolates between vacua (4π/3, 2π) and (2π, 2π), i.e.,

the configuration has indeed non-trivial topological data, with topological charge Q = 9/2.

The energy density, shown in figure 3 is localized in space, as expected for a solitonic

configuration.

In figure 2b we present another BPS state which was found from the initial value for

the field φ(0) = (5, 8). As a result we have obtained usual kink profiles for both φ1 and

φ2. This time the solution interpolates between vacua (4π/3, 2π) and (2π, 4π) and have

topological charge Q = 9/2 as well.
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(a) The solution with φ(0) = (5, 7) given in (2a)

connects the vacua ( 4π
3 , 2π) and (2π, 2π).

(b) The solution with φ(0) = (5, 8) given in (2b)

connects the vacua ( 4π
3 , 2π) and (2π, 4π).

Figure 4. The ∇ηW lines are plotted as black arrows over the potential U . The paths described

by the solutions in figure 2 are plotted as white dashed lines connecting the vacua which are the

white dots.

In order to see more clearly the behavior of the doublet ϕ it is quite helpful to look

at it as a curve in the field space. This is shown in figures 4 where we have the η-gradient

lines of the prepotential W plotted, over the potential U , in colors. The white dashed lines

indicate the BPS solutions given in figure 2. One can clearly see that the paths follow

the η-gradient flow. Here we can also understand why the configurations in 2 interpolate

different vacua. At the point φ = (5, 7) the η-gradient flow connects the vacua (4π/3, 2π)

and (4π/3, 2π), which lie on the same horizontal line φ2 = 2π. So, from this point of view,

it is expected for the profile of φ2 to have a bump, since it will have to return to the same

value at x =∞.

In figure 5, the same paths are shown but now on top of the prepotential function W ,

in colors. One can see from this plot that indeed the prepotential evaluated over the BPS

solution is a monotonic function of the spatial coordinates x and therefore, the vacuum

values are really the points of extrema of this function.

An even more dramatic change in profiles was obtained for the initial condition ϕ(0) =

(7π/6, 2π), in figure 6a, and for ϕ(0) = (7π/6, 2π + 10−3), in figure 6b. Here we see that

even a slight change of order 10−3 in the initial condition ϕ(0) was enough to completely

change the solution and the vacua it interpolates. This evidenciates the infinite number of

independent BPS solutions there are in this model. In figure 6a, while φ1 has a kink profile,

φ2 remains constant and the configuration interpolates points (4π/3, 2π) and (π, 2π). This

solution has topological charge Q = 9/2. In figure 6b we have basically two kink profiles

interpolating (4π/3, 2π) and (2π, 4π), with the exception that φ1 presents a little bump

before tunneling to the other vacuum. The topological charge of this solution is Q = 1/2.

In figures 7 we have shown the paths described by the configurations in 6a and 6b, on

top of the potential color plot. Notice that the vacua ( 4π3 , 2π) and (π, 2π) are connected

exactly by one η-gradient line. Any variation, no matter how small, in vertical axis, φ2
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(a) A solution with φ(0) = (5, 7) interpolating

the vacua ( 4π
3 , 2π) and (2π, 2π).

(b) A solution with φ(0) = (5, 8) interpolating

the vacua ( 4π
3 , 2π) and (2π, 4π).

Figure 5. The∇ηW lines are plotted as black arrows over the prepotential W . The paths described

by the solutions in figure 2 are plotted as white dashed lines connecting the vacua which are the

white dots.

(a) . (b) .

Figure 6. Two numerically calculated BPS states of the model γi = 1.

would go to a region where the η-gradient flows opposite to vacuum (π, 2π). This is exactly

what was observed in the solutions shown in figures 7a and 7b.

In figure 8 we present the same curves obtained from the BPS solutions, but now seen

on top of the prepotential colour plot, in order to emphasize that the function W evaluated

on the solution is monotonic in x.

3.2.1 The sine-Gordon submodel

This model has a particular set of solutions which coincide with BPS solutions of the sine-

Gordon theory.4 They are obtained by taking φ1 = 2πn, with n ∈ Z. For this choice, the

4Here we discuss the case with γ1 = γ2 = γ3 = 1. The most general scenario is that with γ2 = γ3.
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(a) A solution with φ(0) = (7π/6, 2π) interpolat-

ing the vacua ( 4π
3 , 2π) and (π, 2π).

(b) A solution φ(0) = (7π/6, 2π+ 10−3) interpo-

lating the vacua ( 4π
3 , 2π) and (2π, 4π).

Figure 7. BPS states constructed using slightly different initial conditions. A small change of

order 10−3 in the value of φ2 implies a dramatic change in the resulting configurations.

(a) A solution with φ(0) = (7π/6, 2π) interpolat-

ing the vacua ( 4π
3 , 2π) and (π, 2π).

(b) A solution with φ(0) = (7π/6, 2π + 10−3)

interpolating the vacua ( 4π
3 , 2π) and (2π, 4π).

Figure 8. The curves in the field space corresponding to the BPS solutions are shown on top of

the prepotential color plot.

r.h.s. of BPS equation for φ1 vanishes and therefore φ1 remains constant5 while the BPS

equation for φ2 is equivalent to that of the sine-Gordon equation6

dφ2
dx

= ∓3

2
sinφ2 (3.15)

The profile of the solution in this case is presented in figure 9 together with the path in

the field space. Time dependent solutions of this submodel can be obtained by considering

Lorentz boosts of the field: ϕ(x) → ϕ( x−vt√
1−v2 ). This will correspond to a moving profile

5Since the φ1 component will not play a role in the model anymore, we can regard this choice as

characterizing a submodel of the g2 FKZ model.
6One can rescale the field and the spatial coordinate in order to get the usual sine-Gordon BPS equation.
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(a) The profile for the case ϕ = (0, φ2), where φ2
satisfies a sine-Gordon equation.

(b) When φ1 = 0 and φ2 is a sine-Gordon an-

tikink, the path in the fields space is a straigh

line connecting two vacua.

Figure 9. The sine-Gordon theory appears as a submodel of the g2 FKZ model.

of φ2 but in field space the straight line connecting the vacua shown in figure 9b remains

unchanged; a boost is equivalent to a reparameterization of this curve.

It is clear that there is an infinite number of paths connecting these two vacua following

the η-gradient flow, all of them described by BPS states with exactly the same energy and

topological data. We do not have, in principle, any topological or energetic arguments

demonstrating a preference for a specific choice of path, i.e. for why the system chooses

one solution and not the other amongst the infinitly many of them connecting the same

two vacua. For the four solutions presented here, three of them have the same topological

charge and exhibit a very different field profile and not only that but even the vacua which

are interpolated by solutions of same topological charges can be different as in the case of

the solutions presented in figure 2.

Given the apparent degeneracy in energy one could also think about the possibility of

one BPS state evolving in time to another one as a result of some instability. We have

performed the numerical time evolution of the dynamical equation, i.e., the evolution of

the BPS configuration using the full dynamical equation (2.12), and our results have shown

that these BPS configurations remain very stable. This seems to be corroborated by the

fact that being a BPS solution a solution of lowest possible energy, its change to a different

solution would require a spare energy amount which does not exist for the transition to

happen. The fact that the numerically calculated energy agrees with a very good precision

to the topological charge indicates that we are certain that the numerical value of the field

is close enough to its constant value expected at infinity and no remaining non-zero spatial

derivative term exists there, which could lead to a gain in the energy as the result of a

numerical artifact.
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4 The FKZ model for the algebra su(4)

4.1 The construction of the model

The algebra su(4) is of rank r = 3 and the FKZ model associated to it describes a model

for a scalar triplet:

ϕ = φ1
2α1

‖α1‖2
+ φ2

2α2

‖α2‖2
+ φ3

2α3

‖α3‖2
. (4.1)

The Cartan matrix of su(4) is

K =

 2 −1 0

−1 2 −1

0 −1 2

 , (4.2)

and taking ‖αa‖2 = 1 the field space metric is taken to be

η =

 4 −2 0

−2 4 −2

0 −2 4

 . (4.3)

Again, the starting point for the construction of the FKZ model is to define the pre-

potential, that is, to define the representation of the algebra. The algebra su(4) has three

fundamental weights given by

λ1 =
1

4
(3α1 + 2α2 + α3)

λ2 =
1

2
(α1 + 2α2 + α3) (4.4)

λ3 =
1

4
(α1 + 2α2 + 3α3) .

For the first fundamental representation the weights are

µ1 = λ1 =
1

4
(3α1 + 2α2 + α3)

µ2 = λ1 − α1 =
1

4
(−α1 + 2α2 + α3)

µ3 = λ1 − α1 − α2 =
1

4
(−α1 − 2α2 + α3) (4.5)

µ4 = λ1 − α1 − α2 − α3 = −1

4
(α1 + 2α2 + 3α3) ,

and those of the second fundamental representation are

µ̃1 = λ2 =
1

2
(α1 + 2α2 + α3)

µ̃2 = λ2 − α2 =
1

2
(α1 + α3)

µ̃3 = λ2 − α1 − α2 =
1

2
(−α1 + α3) (4.6)

µ̃4 = λ2 − α2 − α3 =
1

2
(α1 − α3) = −µ̃3

µ̃5 = λ2 − α1 − α2 − α3 = −1

2
(α1 + α3) = −µ̃2
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and, finaly, the weights of the third fundamental representation are

µ̄1 = λ3 =
1

4
(α1 + 2α2 + 3α3) = −µ4

µ̄2 = λ3 − α3 =
1

4
(α1 + 2α2 − α3) = −µ3

µ̄3 = λ3 − α3 − α2 =
1

4
(α1 − 2α2 − α3) = −µ2 (4.7)

µ̄4 = λ3 − α3 − α2 − α1 = −1

4
(3α1 + 2α2 + α3) = −µ1.

None of the fundamental representations alone satisfy the requirement for reality of

the prepotential, but we notice that a direct sum of the first and third, 4 ⊕ 4̄, does. As

we only need one of each pair of weights in order to construct the prepotential, we use the

weights of representation 4 and calculate the internal products with the field ϕ:

µ1 ·ϕ=

3∑
a=1

φa
2λ1 ·αa
‖αa‖2

=

3∑
a=1

φaδ1a =φ1

µ2 ·ϕ=

3∑
a=1

φa
2(λ1−α1) ·αa
‖αa‖2

=φ1−K11φ1−K12φ2−K13φ3 =φ2−φ1

µ3 ·ϕ=

3∑
a=1

φa
2(λ1−α1−α2) ·αa

‖αa‖2
=φ2−φ1−K21φ1−K22φ2−K23φ3 =φ3−φ2 (4.8)

µ4 ·ϕ=

3∑
a=1

φa
2(λ1−α1−α2−α3) ·αa

‖αa‖2
=φ3−φ2−K31φ1−K32φ2−K33φ3 =−φ3.

Then, the prepotential for the su(4) FKZ model for the representation 4 ⊕ 4̄ is given

by

W = γ1 cosφ1 + γ2 cos(φ1 − φ2) + γ3 cos(φ2 − φ3) + γ4 cosφ3, (4.9)

and the components of the gradient of the prepotential in the field space are

∂W

∂φ1
= −γ1 sinφ1 − γ2 sin(φ1 − φ2)

∂W

∂φ2
= γ2 sin(φ1 − φ2)− γ3 sin(φ2 − φ3) (4.10)

∂W

∂φ3
= γ3 sin(φ2 − φ3)− γ4 sinφ3.

The potential for this model is then written in terms of these components as

U(ϕ) =
1

2

[
3

8

(
∂W

∂φ1

)2

+
1

2

(
∂W

∂φ2

)2

+
3

8

(
∂W

∂φ3

)2

+
1

2

∂W

∂φ1

∂W

∂φ2
+

1

4

∂W

∂φ1

∂W

∂φ3
+

1

2

∂W

∂φ2

∂W

∂φ3

]
,

(4.11)
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Figure 10. The potential energy density is seen in sliced planes φ2 = nπ
2 , n = 0, 1, 2, 3, 4.

which, for the choice γi = 1, i = 1, 2, 3, adopted from now on, reads

U(ϕ) =
3

16
sin2 (φ1) +

3

16
sin2 (φ1 − φ2) +

3

16
sin2 (φ2 − φ3) +

3

16
sin2 (φ3) +

+

(
1

8
sin (φ1 − φ2) +

1

8
sin (φ2 − φ3) +

sin (φ3)

8

)
sin (φ1) +

−
(

1

8
sin (φ2 − φ3)

sin (φ3)

8

)
sin (φ1 − φ2)−

1

8
sin (φ2 − φ3) sin (φ3) . (4.12)

This potential function can be visualized in figure 10.

4.2 BPS solutions

The vacuum manifold is defined by the set of points of minima of the potential. These

points are the solutions of the system of equations (2.18). For our choice γi = 1, i = 1, 2, 3,

besides the usual discrete set of vacua defined by integer multiples of π, this system has also

solutions given by straight lines in the field space, φ3 = φ1+(2n+1)π, and φ3 = −φ1+2nπ,

n ∈ Z, defined on the planes φ1φ3 which are located at φ2 = (2m + 1), m ∈ Z. This

continuous set of points, referred here as “vacua lines” can be seen in figure 11.

This model has also some discrete symmetries, namely, (φ1, φ2, φ3) → (φ3, φ2, φ1),

φa → φa + 2naπ and (φ1, φ2, φ3) → (φ1 + nπ, φ2, φ3 + nπ). This means that the set

of vacuum points defined above can be further extended including these transformations.

Using a parameter τ in the field space, and taking into account these symmetries, the

vacuum manifold can be finally defined as

ϕ = (n1π, n2π, n3π), ϕ(τ) = (τ, π, π + τ), ϕ(τ) = (τ, π,−τ), (4.13)

with n1, n2 and n3 integers.

In none of our numerical tests a solution has interpolated points in any of the vacua

lines. When forced to approach a vacua line, e.g., setting φ(x = 0) near a line, the solution
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Figure 11. The potential U(φ1, φ3) = 1
4 (sinφ1 + sinφ3)2, restricted to a plane φ2 = (2n + 1)π,

n ∈ Z. The vacua lines φ3 = φ1 + (2n+ 1)π, and φ3 = −φ1 + 2nπ, n ∈ Z are shown.

is always repelled and interpolate the usual “discrete vacua”. This strongly suggests that

no point in these lines is a source or sink of η-gradient lines.

4.2.1 Perturbations on the continuous vacua line

On the plane φ2 = π the potential is highly anisotropic except along the directions of the

vacua lines, where it remains constant with minimum value. The potential has a translation

invariance along these particular directions. Given a point ϕ0 = (τ, π, τ + π), where τ is

fixed, in one of these vacua lines, one can obtain another point of vacuum by performing

a continuous translation along this line. Now, if a perturbation along the parallel and

perpendicular directions to the vacua line is considered7 as

ϕ = ϕ0 +
1

4
(θ − χ, 0, θ + χ), (4.14)

with θ and χ the perturbation fields along these respective directions, then the lagrangian

up to quadratic order in these perturbations reads

Lθ,χ =
1

2
∂µθ∂

µθ +
1

2
∂µχ∂

µχ− 1

16

(
cos2 τ

)
χ2 (4.15)

and the field θ will be a massless while χ can be either massless or massive: the mass term

is given by mχ = 1
2
√
2

cos τ , which depends on the choice of the initial vacuum, i.e., on the

choice of τ , so that for τ = (n + 1
2)π, n ∈ Z, which are exactly the points where the two

types of vacua lines intersect, mχ = 0.

Although a general translation in the field space is not a symmetry of the model,

the potential is invariant for such translations restricted to the continuous vacua line.

Nevertheless, the anisotropy of the potential in the perpendicular direction to this line

7The introduction of a perturbation in the perperndicular direction to the plane where the vacua line is

will not contribute to this linear approximation.
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(a) Two of the components of the BPS configura-

tion exhibit a kink-like behaviour while the third

one has a different shape.

(b) The path in the fields space which defines a

BPS state connects two vacua of the potential.

Figure 12. A BPS solution of the su(4) FKZ model.

on the plane becomes manifest in the fact that the perturbations in this direction aquire

different masses depending on the point along this line they are considered.

After this analysis of the vacua of the potential we can finally solve the BPS equations

for our model which are given below:

dφ1
dx

= ∓1

8
(3 sin (φ1) + sin (φ1 − φ2) + sin (φ2 − φ3) + sin (φ3)) (4.16)

dφ2
dx

= ±1

4
(− sin (φ1) + sin (φ1 − φ2)− sin (φ2 − φ3)− sin (φ3)) (4.17)

dφ3
dx

= ±1

8
(− sin (φ1) + sin (φ1 − φ2) + sin (φ2 − φ3)− 3 sin (φ3)) . (4.18)

The numerical integration of these equations follows the same scheme as used in the

case of two fields, for the g2 FKZ model. In figure 12 we present a solution obtained from

the starting point ϕ(0) = (3, 1, 2). The profile of each component of the triplet is shown in

figure 12a and the path in the field space is plotted in figure 12b, together with slices of

the potential in planes of constant φ2. One sees that the path connects two minima of the

potential, as expected.

4.2.2 The sine-Gordon submodels

Next we have some solutions for which φ2 = 0. In this case the r.h.s. of the BPS equation

for φ2 vanishes and we have two independent sine-Gordon models for φ1 and φ3. The

profiles of φ1 and φ3 are shown in two different cases: one obtained by considering ϕ(0) =

(π + 0.1, 0, 2), shown in figure 13, and the other considering ϕ(0) = (π + 1, 0, 2), shown in

figure 14.

From the BPS equations one sees that the φ2 has a role of coupling the two fields φ1 and

φ3. By setting it to an integer multiple of 2π, the equations for φ1 and φ3 become uncoupled

and one has the freedom of shifting these two fields in space independently. So one can

– 19 –



J
H
E
P
0
5
(
2
0
2
0
)
0
1
1

(a) The profile of the components of the scalar

triplet obtained with ϕ(0) = (π + 0.1, 0, 2).

(b) The path in the fields space remains in the

plane φ2 = 0.

Figure 13. For φ2 = an integer multiple of 2π the BPS equations become the equations of two

independent sine-Gordon models for the components φ1 and φ3 of the scalar triplet.

(a) The component φ1 is shifted in space if com-

pared with the one shown in 13a.

(b) The path in the fields space has completely

changed from the one obtained in 13b.

Figure 14. A BPS solution of the su(4) FKZ model for the particular case where φ2 = 0.

scan a whole subset of solutions of the g2 FKZ model starting from such a configuration

and performing translations of the fields φ1 and φ3. If one considers a Lorentz boost which

is performed equally for all the components of the scalar triplet, then one finds a class of

time dependent solutions.

Another submodel can be further obtained if one consider φ1 an integer multiple of π

together with φ2 an integer multiple of 2π. In figure 15 we show the case obtained from

ϕ(0) = (π, 0, 2). It is a sine-Gordon model for the field φ3. Here, again, we have a whole

class of solutions which can be obtained by shifting this configuration.

We have performed the numerical integration of the full dynamical equations (2.12)

taking the BPS configurations as the starting profile. As expected, the solutions are very

stable.
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(a) The component φ1 is shifted in space if com-

pared with the one shown in 13a.

(b) The path in the fields space has completely

changed from the one obtained in 13b.

Figure 15. A BPS solution of the su(4) FKZ model for the particular case where φ2 = 0.

5 Conclusions

We have explored two new models based on the generalization of the BPS equation in-

troduced in [11], where the field space is that of the roots of a given Lie algebra, here

considered to be g2 and su(4). Usually we have solitonic solutions in 1+1 dimensional

space-time for theories involving a single scalar field. The models we have discussed here

are in 1+1 dimensions but the field is a doublet and a triplet. What we see is that the

number of vacua is huge and moreover, the possibilities of solutions which interpolate them

is also very large. This allows for the construction of many different configurations which,

in the field space, defines a curve or a string with fixed end points. These BPS solutions

were proved to be very stable as one could expect for a configuration with the least possible

energy. We were not able to provide an argument which justifies the choice of the BPS

state made by the system, dynamically, i.e., amongst the infinitely many solutions with

same topological charge which interpolate two vacua, our numerical technique leaves for

the system to choose one and what we observed is that any of them is as good as the others.

Finally, the form of the potential allows for the identification of submodels in the sense

that one can make one (or two, in the case of su(4)) of the components of the multiplet to

be a constant and the remaining degrees of freedom will undergo a dynamics governed by

the sine-Gordon equation, which allows for the construction of analytical solutions.

We are currently investigating on physical models which can be described by multiplets

of scalar field in 1+1 dimensional space-time and therefore, a concrete application of some

of the FKZ models, perhaps for specific choices of the parameters γi. We are also solving

the full dynamical equation of the solutions found here in order to be able to discuss about

the forces between the solitons.
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