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Trapped ions driven by electromagnetic radiation constitute one of the most developed quantum technologies
to date. The scenarios range from proof-of-principle experiments to on-chip integration for quantum information
units. In most cases, these systems have operated in a regime where the magnitude of the ion-radiation coupling
constant is much smaller than the trap and electronic transition frequencies. This regime allows the use of
simple effective Hamiltonians based on the validity of the rotating-wave approximation. However, novel trap
and cavity designs now permit regimes in which the trap frequency and the ion-radiation coupling constant are
commensurate. This opens up new avenues for faster quantum gates and state transfers from the ion to a photon
and other quantum operations. From the theoretical side, however, there is not yet much known in terms of
models and applications that go beyond the weak-driving scenario. In this work, we present two main results in
the scenario of stronger driving. First, we revisit a known protocol to reconstruct the motional Wigner function
and expand it to stronger-driving lasers. This extension is not trivial because the original protocol makes use of
effective Hamiltonians valid only for weak driving. The use of stronger fields or faster operations is desirable
since experimental reconstruction methods of that kind are usually hindered by decoherence. We then present a
model that allows the analytical treatment of stronger driving and that works well for nonresonant interactions,
which are generally out of the reach of previous models.
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I. INTRODUCTION

Trapped ions manipulated by classical and quantum radia-
tion fields have now become flexible platforms to test quantum
protocols [1–3]. These include the generation and detection
of nonclassical states [2,4–6] and the engineering of quantum
operations [7–10], just to name a few examples. Typically,
experiments have been conducted in a regime where the ap-
plied radiation fields weakly interact with the electric dipole,
referred to as the internal degrees of freedom of the ion. If
� denotes the ion-radiation coupling constant, i.e., the Rabi
frequency, and ν (ω0) denotes the trap (electronic transition)
frequency, that regime is characterized by � � ν, ω0. This
greatly facilitates the theoretical description of the system
because the coupling to the external radiation fields can be
regarded as a small perturbation. In this way, the rotating-
wave approximation (RWA) can be safely applied [11], which
results in the well-known carrier and sideband Hamiltonians
[1]. These are effective Hamiltonians which give accurate
results only when � � ν, ω0.

In spite of the remarkable success of that regime, there are
many reasons to pursue accurate models to describe stronger
couplings to the external fields. We would like to mention
two of them. First, by strengthening the coupling constant
to � ∼ ν, one could aim to design fast quantum operations
driven by the external laser. Given that decoherence times
often impose limits on the scaling of the protocols, it might
be useful to operate at the highest possible speeds. Indeed,
this is the main motivation for the proposal reported in [12].
There, the authors make use of a particular instance of the
transformation originally reported in [13]. As we will see
later, that transformation works well for � ∼ ν, but it tends to

lose accuracy as one moves the system out of exact resonance,
as given by the relation ωL = ω0, where ωL is the laser fre-
quency. One of our main results is precisely the presentation
of a model which works well for � ∼ ν and is not restricted to
exact resonance. Second, the exploration of new regimes usu-
ally favors the proposal of new applications. A representative
example is the Rabi Hamiltonian proposed as the non-RWA
version of the well-known Jaynes-Cummings model (JCM).
While it is absolutely true that the JCM is very successful, its
validity is guaranteed only for weak atom-radiation coupling
constants. By allowing the use of stronger fields, which make
the RWA unfeasible, the Rabi model allows, for example, the
description of quantum phase transitions [14,15], something
that is out of reach of the JCM.

In the first part of this work, we revisit one of the most
relevant techniques in the toolbox used to measure and control
trapped ions, which is the Wigner-function reconstruction of
the ionic motional state [2,16]. The known protocols are based
on effective Hamiltonians valid only for weak interactions
with external lasers, i.e., � � ν. Here, we generalize it to
the use of stronger ion-radiation couplings, with � ∼ ν. In
order to illustrate the importance of using stronger couplings,
we add some effective decoherence during the reconstruction
protocol and compare the performance of our protocol with
that of previous ones [2,16]. In the second part of this work,
we take a step further and show that the combination of uni-
tary transformations [12,13,17,18], RWA, and diagonalization
allows one to obtain an effective Hamiltonian that is exactly
diagonalizable. This Hamiltonian significantly enhances the
range of parameters under which previous models produce
accurate results [12,13], especially in the nonresonant case,
ωL �= ω0.
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This article is organized as follows. In Sec. II, we provide
a short introduction to the basic concepts concerning the in-
teraction of trapped ions and lasers. In particular, we briefly
review the preceding models treating the regime � ∼ ν. As
mentioned, these models are accurate only when the laser is
resonant with the internal levels of the ion. In Sec. III, we
present a protocol to reconstruct the Wigner function in that
resonant regime, taking advantage of having faster operations
to combat the detrimental effects of decoherence. In Sec. IV,
we present a model for the regime � ∼ ν which provides an-
alytical results accurate even in the nonresonant case. Finally,
we summarize and make final remarks in Sec. V.

II. INTERACTION OF A TRAPPED ION WITH A LASER

In this section, we provide a short review of the usual
models for the interaction of a two-level trapped ion with a
laser. As we will see, the main ingredient in those models
is the assumption of a weak ion-laser interaction in order to
obtain effective RWA Hamiltonians that can be analytically
diagonalized. We also review the few approaches found in the
literature for stronger interactions, which is the regime treated
in this article.

For practical considerations, one usually models this sys-
tem as a two-level ion whose center of mass is subjected to
a harmonic potential. An external classical laser is then used
to couple the internal and external degrees of freedom of the
ion. Following a well-known microscopic derivation [1], one
is led to write the system Hamiltonian as

H = H0 + V, (1)

where

H0 = νa†a + δ

2
σz (2)

is the free Hamiltonian of the trapped ion, with ν being the
trap secular frequency and δ ≡ ω0 − ωL being the laser-ion
detuning. Also,

V = �

2
[σ+ D(iη) + σ− D†(iη)], (3)

where η is the Lamb-Dicke parameter [1], D(α) ≡ eαa†−α∗a

is the displacement operator, and � is the ion-laser coupling
constant, also known as the Rabi frequency. The coupling
term in Eq. (3) is seen to be the result of momentum con-
servation and is the cause of entanglement between internal
and external degrees of freedom. By keeping the relative angle
between the laser wave vector and the trap axis upon which the
ion is oscillating fixed, the Rabi frequency can be enhanced by
increasing the laser power [1,2].

The next step is usually the assumption of η � 1. This
allows us to expand the exponentials in Eq. (3) up to O(η),
leading to

V ≈ �

2
σx + iη�

2
(σ+ − σ−)(a + a†). (4)

The above interaction term, together with the free Hamil-
tonian in Eq. (2), is analogous to the Rabi model with an
additional transverse field, and it is linear in the bosonic oper-
ators. On the other hand, the original Hamiltonian in Eq. (1)

has all powers in the bosonic operators and, for larger η,
may lead to drastically different dynamics when compared
to that generated by Eq. (4). Typically, η � 10−1 is allowed
within this approximation, which is known as the Lamb-Dicke
regime [2].

By tuning the laser frequency to satisfy δ = ν and ne-
glecting fast-oscillating terms, we arrive at the so-called red
sideband Hamiltonian

HRSB ≈ νa†a + δ

2
σz + iη�

2
(σ+a − σ−a†), (5)

which is analogous to the JCM. The validity of this RWA is
heavily dependent on the magnitude of the coupling constants
accompanying the neglected terms relative to the other fre-
quencies involved, ν and δ. Given that δ is usually of the order
of ν, the validity of that RWA requires � � ν. This leads to
a limitation in the speed of operations when considering this
effective Hamiltonian since the Rabi frequency dictates the
rate of transitions in the JCM.

In order to access faster regimes, it is useful to have models
valid for � ∼ ν. This can be accomplished with the use of
well-crafted unitary transformations before any RWA is per-
formed [12,13,17]. Given its use in the next section, let us
briefly review the approach presented in Ref. [12]. We will
expand on the more general approach proposed by Ref. [13]
in Sec. IV.

First of all, we consider the system in exact resonance,
δ = 0, in Eq. (2). Using the coupling term in the Lamb-Dicke
regime, Eq. (4), the Hamiltonian reads

H = νa†a + �

2
σx + iη�

2
(σ+ − σ−)(a + a†). (6)

By applying the unitary transformation [12]

R = 1√
2

(
1 1

−1 1

)
(7)

to Eq. (6), we arrive at

H ′ ≡ RHR† = νa†a + �

2
σz + iη�

2
(σ+ − σ−)(a + a†). (8)

Now, by choosing � = ν, we can perform the RWA and find
another JCM-type effective Hamiltonian that reads [12]

H ′
JCM ≈ νa†a + �

2
σz + iη�

2
(σ+a − σ−a†). (9)

We can now understand the reason why the dynamics that
follows from the sideband Hamiltonian in Eq. (5) is slower
than that obtained with Eq. (9). Despite the fact that in both
cases the RWA demands η� � ν, the one performed to obtain
Eq. (5) additionally requires � � ν for us to be able to neglect
the transverse term �σx/2 in Eq. (4). This is illustrated in
Figs. 1(a) and 1(b). In those plots, we consider the electronic
part initially in the excited state |e〉, while the vibrational part
is in the first excited state |1〉. It is clear that � = 0.05ν is
already too much for the sideband Hamiltonian to hold.

On the other hand, Eq. (9) takes place with stronger fields
(� = ν). In order to fulfill η� � ν, i.e., ην � ν, it is enough
to have η � 1. This is already true when considering this
parameter within the Lamb-Dicke regime. In Fig. 1(c), the
dynamics corresponds to 〈σx〉 instead of 〈σx〉 because the
effect of transformation in Eq. (7) is a rotation about the y axis
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FIG. 1. Atomic inversion as a function of the scaled time νt .
In (a) and (b) the trapped ion is initially prepared in |e〉 ⊗ |1〉, i.e.,
in the excited electronic state and the first excited vibrational state,
respectively. In (c), the initial motional state is the same as before,
but the electronic part is initially prepared in |+〉 = (|e〉 + |g〉)/

√
2.

In all plots, the Lamb-Dicke parameter is η = 0.05, and the black
solid line is the exact result numerically obtained with the original
Hamiltonian in Eq. (1). In (a) and (b), δ = ν, and the red dashed
line is obtained with the red sideband Hamiltonian in Eq. (5). The
plots in (a) use � = 0.02ν, while those in (b) use � = 0.05ν. In (c),
δ = 0, and � = ν, while the red dashed line is obtained with the
Hamiltonian in Eq. (9).

(in the Bloch sphere). For the same reason, the electronic part
is now prepared in |+〉, which is the eigenstate of σx with an
eigenvalue of +1, instead of |e〉. With respect to Fig. 1(c), we
would like to emphasize two points [12]: (i) The Hamiltonian
in Eq. (9) is accurate in a regime where the sideband Hamilto-
nian in Eq. (5) is no longer valid. (ii) Despite the smallness of
the Lamb-Dicke parameter, quantum operations using Eq. (9)
are faster than the ones using the usual sideband Hamiltonian
which are displayed in Figs. 1(a) and 1(b).

III. PROTOCOL FOR THE DETERMINATION OF THE
MOTIONAL WIGNER FUNCTION REVISITED

In this section we give a concise review of the method of
characterization of the motional state proposed in Ref. [2].
The method was conceived with the use of sideband Hamilto-
nians, such as the one in Eq. (5). We also present an extension
to this method, which, in turn, will allow the use stronger
coupling constants �.

The scenario considered is as follows. Suppose that, at the
end of a certain trapped-ion protocol, we arrive at the state

|ψ0〉 = |g〉 ⊗ |φ〉, (10)

where the motional state |φ〉 is unknown and |g〉 is the eigen-
state of σz with an eigenvalue of −1, the electronic ground
state. The protocol proposed in Ref. [2] allows us to determine
the motional state |φ〉.

The first step is the application of the displacement opera-
tor D†(α) to the initial state in Eq. (10), that is,

|ψ̃0〉 ≡ |g〉 ⊗ D†(α)|φ〉. (11)

By allowing this state to evolve in time with the red sideband
Hamiltonian in Eq. (5), we find that the ground-state proba-
bility is given by

Pg(t ) = 1

2

(
1 +

∞∑
k=0

Qk (α) cos(η�
√

kt )

)
, (12)

where Qk (α) ≡ |〈k|D†(α)|ψ0〉|2. After experimental determi-
nation of Pg(t ), we can fit the curve, and the coefficients Qk (α)
can be obtained.

With the coefficients Qk (α) at hand, the relation [19]

W (α) = 2

π

∞∑
k=0

(−1)kQk (α) (13)

then allows for the determination of the Wigner function of
|φ〉 at a given point α. Finally, by repeating this procedure
throughout the phase space, the Wigner function of the mo-
tional state can be determined. More details on the protocol
can be found in Ref. [2], which also presents a way of directly
determining the density operator of the motional state by using
these same quantities, Qk (α), obtained for several phase-space
points α.

A. Adapting the protocol for stronger lasers

In order to adapt this method for faster regimes, one must
go beyond the usual sideband Hamiltonians [Eq. (5)], whose
validity is conditioned to the use of weak lasers, i.e., � � ν.
To that effect, we propose the use of the Hamiltonian in
Eq. (9), which works in the intermediate-intensity regime,
� ∼ ν. This regime will be carefully investigated with nu-
merical methods in Sec. IV. As a matter of fact, in that
section we will present an effective Hamiltonian that is valid
for a broader range of physical parameters when compared
to Eq. (9). In the context of protocols for Wigner-function
reconstruction, however, the use of such a Hamiltonian would
bring unnecessary complications concerning the observables
to be measured in place of the much simpler Pg(t ). The reason
is that the overall unitary transformation we will use to obtain
such a Hamiltonian is much more complicated than that in
Eq. (7), causing entanglement between projectors acting on
motion and internal degrees of freedom. Given all that, for the
purpose of the Wigner-function protocol, we will focus on the
Hamiltonian in Eq. (9).

The protocol as presented in the last section asks for a
JCM-like Hamiltonian, which is exactly what we have with
Eq. (9). Nevertheless, it is important to remember that this
effective Hamiltonian has this form in a frame rotated by the
unitary transformation R [Eq. (7)]. Since the actual experi-
ment takes place in an unrotated frame, we must be consistent
with which basis we are considering. For clarity, let us name
the frame rotated by R the “JCM frame” and the usual, unro-
tated frame the “laboratory frame.”

At the start of the protocol, we need the state to have the
form of Eq. (10) in the JCM frame. This can be accomplished,
in the laboratory frame, by the use of a rotated initial state,

|ψ0〉lab = R†|g〉 ⊗ |φ〉 = −|−〉 ⊗ |φ〉, (14)

where |−〉 = (|e〉 − |g〉)/
√

2 is the eigenstate of σx corre-
sponding to an eigenvalue of −1. Thus, in the JCM frame,
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TABLE I. Summary of the objects needed in the Wigner-function-determination protocol in both frames.

JCM frame Laboratory frame

Initial state |ψ0〉 = |g〉 ⊗ |φ〉 |ψ0〉 = −|−〉 ⊗ |φ〉
Displacement operator D†(α) D†(α)
Measurement Pg(t ) = 1

2 [1 + ∑∞
k=0 Qk (α) cos(η�

√
kt )] P−(t ) = 1

2 [1 + ∑∞
k=0 Qk (α) cos(η�

√
kt )]

the initial state will read

|ψ0〉JCM = R|ψ0〉lab = |g〉 ⊗ |φ〉, (15)

as needed.
The next step is to apply the displacement operator D†(α)

in the JCM frame. This step remains unchanged in the labora-
tory frame since

R†D†(α)R = D†(α). (16)

Now the system is allowed to evolve according to the effective
Hamiltonian in Eq. (9), and �g = |g〉〈g| is measured in the
JCM frame. This amounts to measuring

R†�gR = |−〉〈−| (17)

in the laboratory frame, which is a simple measurement acting
only on the electronic degrees of freedom. It corresponds to
the probability of finding the ion in the electronic state |−〉 at a
given instant t , which we denote as P−(t ). This probability can
be determined from the known Pg(t ) [Eq. (12)] for an initial
state of the form Eq. (10) evolving according to a JCM-like
Hamiltonian since

Plab
− (t ) = |〈−|ψ (t )〉lab|2 = |〈g|ψ (t )〉JCM|2 = PJCM

g (t )

= 1

2

(
1 +

∞∑
k=0

Qk (α) cos(η�
√

kt )

)
. (18)

Finally, we proceed to fit the curve P−(t ) to determine
the quantities Qk (α) in order to calculate W (α) [Eq. (13)],
just like in the original protocol. The same steps are then
repeated for each chosen phase-space point α. A summary of
the objects in both the laboratory and JCM frames that are
important to this generalized protocol is presented in Table I.

Our guide in adapting this protocol for stronger lasers was
to keep the operations as simple as possible. Had we consid-
ered the more general unitary transformation, which will be
presented later, we would not have been able to use the simple
objects in Eqs. (14), (16), and (17). Since this general trans-
formation tends to entangle electronic and motional degrees
of freedom, the objects used in the laboratory frame would
become considerably more complicated.

B. Inclusion of decoherence effects

Let us suppose that a target motional state |φ〉 is pro-
duced in a particular trapped-ion experiment, and we want
to characterize it by applying either the original protocol [2]
or the one proposed here, which goes beyond the sideband
Hamiltonians. Assuming that there are no limitations on the
number of phase-space points used to reconstruct the Wigner
function, both protocols would work perfectly well in the
idealized scenario where no decoherence takes place. The next

step we take, then, is to phenomenologically include some
decoherence effect.

It is not our goal to realistically model the decoherence
and noise present in actual trapped-ion setups. In contrast to
the cavity-QED systems, where simple reservoir models usu-
ally describe well the observed decoherence, in trapped-ion
systems there is no such a universal treatment. Theoretical
work has primarily investigated the intensity fluctuations of
the laser beams and random perturbations on the trap param-
eters [20–25]. However, specific implementations are usually
affected by other noise mechanisms such as random fluctu-
ations in magnetic fields used to lift level degeneracy. On
the experimental side, it seems that more attention has been
paid to improvements in quantum control with trapped ions
than to in-depth discussion of the sources of decoherence [3].
For all that, what we do here is adopt a simple toy model
which captures the general trends of decoherence and use it
to highlight the need to design fast protocols.

In this spirit, we subject the free evolution step in the
protocol introduced earlier this section to a dephasing channel.
Effectively, this will be accomplished by the inclusion of a
noise term of the form

Ddeph(ρ) = γ (σzρσz − ρ) (19)

in the master equation, where γ is the dephasing rate. This
term is written in the laboratory frame. In order to describe
how the evolution in the JCM frame will be affected, we again
use the transformation R [Eq. (7)], arriving at

DJCM
deph (ρJCM) = γ (σxρJCMσx − ρJCM). (20)

We proceed to numerically demonstrate the need for the faster
version of the protocol in scenarios with slightly larger values
of the dephasing rate, γ .

C. Numerical support

In order to underpin the importance of exploring faster
regimes in the trapped-ion setup, we now present some numer-
ical results. All the numerics presented were done using the
QUANTUMOPTICS.JL framework [26] for the JULIA program-
ming language [27].

For comparison, in each case described later, we ran two
simulations: one following the protocol in the low-intensity
regime [2] and the other following the adapted protocol for
the intermediate-intensity regime, as described earlier in this
section. In both cases the steps were (i) initialization of a
chosen state |ψ0〉 [Eq. (10)] to be determined; (ii) application
of the displacement operator D†(α); (iii) evolution of the
probability Pg(t ) according to the respective master equation,
depending on the regime in case; (iv) fitting of the data calcu-
lated numerically to the analytical expected result [Eq. (12)]
and determination of the coefficients Qk (α); and (v) finally,

042605-4



TRAPPED IONS BEYOND CARRIER AND SIDEBAND … PHYSICAL REVIEW A 107, 042605 (2023)

with this information, calculation of the Wigner function at
point α [Eq. (13)]. These steps are then repeated for each
chosen point α. Notice that the fitting of the numerical data
will introduce errors in the calculation of Qk (α) beyond those
naturally expected for numerical calculations. This is due to
the fact that the expression used to fit the data [Eq. (12)] was
derived considering that the system is evolving coherently.

For convenience, in each case we performed the
calculations in the JCM frame. In the low-intensity regime,
the system evolved according to the red sideband Hamiltonian
in Eq. (5), with parameters set to δ = ν and � = 0.05ν. For
a typical ion trap with secular frequency on the order of
ν = 1 MHz [1], this means a Rabi frequency of about
� = 50 kHz. For the intermediate-intensity regime, the
system evolved according to the effective Hamiltonian in
Eq. (9), with δ = 0 and � = ν. From the experimental side,
this regime of � comparable to ν can be achieved using, for
example, a trapped Yb ion coupled to a fiber Fabry-Pérot
cavity [28]. In both cases the Lamb-Dicke parameter was
set to η = 0.05, and the cutoff of the number basis for the
motional subspace was set to N = 50. Also in both cases,
the time evolution step was performed for a total time of
�t = 800 for each point α considered. Notice that, since the
magnitude of � is different in each of the regimes considered,
the times in the more comparable units νt will be much larger
for the low-intensity regime.

As stated before, we introduced a dephasing term in the
evolution step in order to model some decoherence effect in-
terfering with the protocol. Besides the parameter values, this
is the only other point where the simulations diverge. Since the
dephasing term Eq. (19) is written in the laboratory frame, it
will act with this form only in the low-intensity case since the
sideband Hamiltonian (5) is already written in this frame. In
the intermediate-intensity case, since the JCM and laboratory
frames are not the same, we have to use the transformed
version of the noise term in Eq. (20). We performed the
simulations for increasing values of the dephasing rate γ in the
interval 1.6 × 10−7ν � γ � 2.5 × 10−3ν. Again, considering
a secular frequency of the order of ν ∼ 1 MHz, the dephasing
rates will be in the interval 0.16 Hz � γ � 2.5 kHz.

As initial motional states we chose some recognizable
cases, namely, number, coherent, and cat states. In every case
the results were qualitatively similar in that the faster proto-
col always gave better results when compared to the slower
one, with the difference being more prominent the larger the
dephasing rate γ was.

To illustrate this, in Fig. 2 we present the results for the
simulation using a motional cat state,

|cat〉 = N (|α = 2〉 + |α = −2〉), (21)

where N is a normalization factor. Since the full Wigner
function would require a three-dimensional plot, we opted for
a slice of the phase space. Namely, we calculated the Wigner
function in the planes with Im{α} = 0 (left column of Fig. 2)
and Re{α} = 0 (right column). Each row of Fig. 2 shows a run
of the protocol with different dephasing rates γ . The analytical
form of the Wigner function for the cat state is presented as a
gray solid line for comparison. The red dots are the points
returned by the protocol in the slower regime, and the blue
crosses are the points returned by the faster version.

FIG. 2. Numerical simulation of the Wigner-function-
determination protocol for a motional cat state [Eq. (21)] in
the presence of dephasing. In each panel we present the analytical
Wigner function (gray solid line), the results using the slow-regime
protocol (red dots), and the results using our proposed faster
protocol (blue crosses). Each column gives a specific slice of the
Wigner function. With each row the value of the dephasing rate γ is
increased.

As Fig. 2 shows, the faster protocol visually outperformed
the slower one in each run, even if only slightly in the
case with the least dephasing (γ = 1.6 × 10−7ν). As men-
tioned, the difference becomes more visible with increasing
γ . Already in the case γ = 1.0 × 10−4ν, the slower protocol
returned a completely ruined figure, with only the two bumps
visible in the left slice but without the interference pattern in
the center and the negative values expected in the right slice.
The protocol adapted for the faster regime returned acceptable
results for dephasing rates up to γ = 1.0 × 10−4ν. Even in the
extreme case γ = 2.5 × 10−3ν, the result was able to keep
a general shape and some negativity in the right slice. Even
with this simple example, we hope to convince the reader
of some of the advantages of exploring faster regimes in the
trapped-ion setup.

IV. BEYOND SIDEBAND HAMILTONIANS IN THE CASE
OF NONRESONANT INTERACTION

As a second result of this work, we present an effective
Hamiltonian able to give accurate results in the intermediate-
intensity regime, � ∼ ν, even in the case of nonresonant
laser interactions, δ �= 0. Let us go back to the complete
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Hamiltonian, defined in Eq. (1), to which the unitary trans-
formation [13,18]

T (β ) = 1

2
√

2
[(I + σz )D†(β ) + (I − σz )D(β )

+ 2σ+D(β ) − 2σ−D†(β )]

= 1√
2

(
D†(β ) D(β )

−D†(β ) D(β )

)
, (22)

is applied with β = iη/2. Notice, as stated before, how this
generalized transformation entangles electronic and motional
degrees of freedom, as opposed to the simpler Eq. (7). The
transformed Hamiltonian then reads

H ′ ≡ T HT † = νa†a + �

2
σz − δ

2
σx + iην

2
σx(a − a†). (23)

The next step according to Ref. [13] is the application of a
RWA with the resonance condition � = ν, leading to

H ′
MC ≈ νa†a + �

2
σz + iην

2
(σ+a − σ−a†), (24)

which is a JCM-like effective Hamiltonian akin to the one
in Eq. (9). What is to be remarked here is that such a RWA
is unlikely to give accurate results when δ �= 0. Let us con-
sider, for example, the usual choice δ = ν. A close look at
Eq. (23) reveals that the σx term would appear with a cou-
pling constant with a magnitude of ν/2, which is stronger
than ην/2. The result is that the σx term cannot be ne-
glected for δ �= 0 as done in Ref. [13]. In fact, as we will
see later, their effective Hamiltonian starts losing accuracy as
δ increases.

Having that in mind, we propose here a further step prior
to the RWA which will allow us to obtain accurate results
for a slightly broader range of detunings δ. This step is the
diagonalization of the two-level free term in Eq. (23), i.e.,

U

(
�

2
σz − δ

2
σx

)
U † = ω̃

2
σz, (25)

by means of the unitary transformation

U = 1√
2ω̃

(√
ω̃ + � −√

ω̃ − �√
ω̃ − �

√
ω̃ + �

)
, (26)

where

ω̃ ≡
√

�2 + δ2. (27)

Applying U to the full Hamiltonian [Eq. (23)], we find

H ′′ = UT HT †U †

= νa†a + ω̃

2
σz − iδην

2ω̃
σz(a − a†)

+ i�ην

2ω̃
σx(a − a†), (28)

and only now, do we make a RWA, arriving at the JCM-like
effective Hamiltonian

H ′′ = νa†a + ω̃

2
σz + i�ην

2ω̃
(σ+a − σ−a†), (29)

with the resonance condition given by ω̃ = ν.
One interesting aspect of this resonance condition is that it

is valid for a whole range of values of the parameters δ and

�, which represents a significant improvement over previous
approaches [12,13,17]. Following from the definition of ω̃

[Eq. (27)] and from our resonance condition ω̃ = ν, we find

� =
√

ν2 − δ2, (30)

with 0 � |δ| < ν. Therefore, our effective Hamiltonian in
Eq. (29) functions as a bridge between the well-known side-
band Hamiltonians valid in the low-intensity regime (� �
ν and δ ∼ ν) and the intermediate-intensity regime (� ∼ ν

and δ ∼ 0). This interpolation was prohibited in previous ap-
proaches, given that, contrary to Eq. (30), they had to fix � in
a resonance condition which did not involve δ.

Now, we make one final comment concerning the validity
of Hamiltonian in Eq. (29). When passing from Eqs. (28)
to (29), we neglected the terms

iδην

2ω̃
σz(a − a†) (31)

and
i�ην

2ω̃
(σ−a − σ+a†). (32)

As mentioned, the validity of the RWA relies on the magni-
tude of the coupling constants relative to ν. Given that the
resonance condition requires ω̃ = ν, the important quanti-
ties to analyze in Eqs. (31) and (32) are then δη and �η,
respectively. Since our main goal is to provide analytical
progress in regimes where � ∼ ν, the need for �η � ν will
impose η � 1. This is not a problem since the experiments
usually operate in the Lamb-Dicke regime [1]. In addition,
the condition η � 1 also contributes to satisfying δη � ν.
However, one must pay attention to the case of small �, i.e.,
� � ν. According to Eq. (30), the detuning δ must approach
ν in that case. This would tend to increase the importance
of the term in Eq. (31). Again, this is not a problem since
the sideband Hamiltonians work well in this low-intensity
regime [1].

Numerical support

Now we present some numerical simulations to check the
validity of the effective Hamiltonian in Eq. (29). We will fix an
initial state and then let it evolve according to our result, i.e.,
the Hamiltonian in Eq. (29), the red sideband Hamiltonian in
Eq. (5), and the effective Hamiltonian in Eq. (24). We do not
include simulations with the Hamiltonian in Eq. (9) because it
is just Eq. (24) in the Lamb-Dicke regime and δ = 0. At each
time step, we evaluate the fidelity

F (t ) = |〈ψ̃ (t )|ψ (t )〉|2, (33)

where |ψ (t )〉 is the state numerically evolved with the com-
plete Hamiltonian in Eq. (1) and |ψ̃ (t )〉 is the state obtained
with one of the effective Hamiltonians in Eqs. (5), (24), and
(29).

It is important to mention that, for the total evolution times
considered (νt well into the hundreds or even thousands, as
will be seen shortly), the curve of the fidelity F presents ex-
tremely fast, small oscillations around a well-defined average
curve. Presenting all that information here would be fruitless
since the oscillations blur the lines in the graphs. So to en-
hance the intelligibility, we averaged over these oscillations
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FIG. 3. Numerical evolution of the fidelity between a state
evolved according to effective Hamiltonians in Eqs. (5) (red dotted
line), (24) (green dashed line), and (29) (blue solid line) and one
evolved according to the complete Hamiltonian in Eq. (1). Results
are for the intermediate-intensity regime in the resonant case, with
parameters � = 1.0ν and δ = 0.

and present that quantity. Rigorously, what was done was the
averaging of the fidelity values F (t ) over time intervals of
�T = 2π . This can be understood as a coarse graining of the
time parameter.

Again, we performed the simulations for an assortment of
initial states, always obtaining qualitatively similar results.
For the results presented here, we chose a toy state that in-
cludes entanglement and different motional states

|ψ0〉 = N (|e〉 ⊗ |α = 2〉 + |g〉 ⊗ |n = 4〉), (34)

where N is a normalization factor, |n〉 denotes a motional
number state, and |α〉 denotes a motional coherent state.

For all the calculations, the Lamb-Dicke parameter was
set to η = 0.05. Starting in the faster regime, in Fig. 3 we
present the results using parameters � = 1.0ν and δ = 0. As
expected, the effective Hamiltonian in Eqs. (24) (green dashed

FIG. 4. Numerical evolution of the fidelity between a state
evolved according to effective Hamiltonians in Eqs. (5) (red dotted
line), (24) (green dashed line), and (29) (blue solid line) and one
evolved according to the complete Hamiltonian in Eq. (1). Results
are for the intermediate-intensity regime in the nonresonant case,
with parameters � = 1.0ν and δ = 0.3ν.

FIG. 5. Numerical evolution of the fidelity between a state
evolved according to effective Hamiltonians in Eqs. (5) (red dotted
line), (24) (green dashed line), and (29) (blue solid line) and one
evolved according to the complete Hamiltonian in Eq. (1). Results
are for the intermediate-intensity regime in the nonresonant case,
with parameters � = 0.95ν and δ = 0.3ν.

line) and (29) (blue solid line) produced identical results since
the former is a particular case of the latter for δ = 0. Both
of them kept the fidelities over F > 99% for the whole time
interval considered. Not surprisingly, the red sideband Hamil-
tonian (red dotted line) performs poorly since we are far from
its validity regime, which is the low-intensity regime, � � ν.

In Figs. 4 and 5 we illustrate a case of nonresonant in-
teraction, i.e., δ �= 0. First, in Fig. 4 we used � = 1.0ν and
δ = 0.3ν. Neither Eq. (24) nor Eq. (29) performed particularly
well, although the model proposed here performed slightly
better, presenting F > 95% for the total time considered. It
is worth noticing that our model was actually expected to not
work well because δ = 0.3ν demands a retuning of the Rabi
frequency � in order to satisfy the resonance condition ω̃ = ν

or, equivalently, to satisfy Eq. (30). In Fig. 5 we keep δ = 0.3ν

and use � = 0.95ν, which is much closer to the resonance

FIG. 6. Numerical evolution of the fidelity between a state
evolved according to effective Hamiltonians in Eqs. (5) (red dotted
line), (24) (green dashed line), and (29) (blue solid line) and one
evolved according to the complete Hamiltonian in Eq. (1). Results
are for the low-intensity regime, with parameters � = 0.01ν and
δ = 1.0ν.
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FIG. 7. Numerical evolution of the fidelity between a state
evolved according to effective Hamiltonians in Eqs. (5) (red dotted
line), (24) (green dashed line), and (29) (blue solid line) and one
evolved according to the complete Hamiltonian in Eq. (1). Results
are for the low-intensity regime, with parameters � = 0.1ν and
δ = 1.0ν.

condition in Eq. (30). This time around, we managed once
more to keep F > 99% over the total time duration. At the
same time, the result using Eq. (24) worsened, as � = 0.95ν

is outside of its resonance condition � = ν. It is then clear that
Eq. (29) represents a step forward in the direction of having
diagonalizable effective Hamiltonians covering new regimes
of operation in trapped ions manipulated by lasers beams.

Finally, we present in Figs. 6 and 7 examples in the low-
intensity regime (� � ν). Our goal is to check how well
our model interpolates the weak- and intermediate-intensity
regimes. For both Figs. 6 and 7 we used δ = 1.0ν. In Fig. 6,
we used � = 0.01ν, and it is clear that the evolution according
to the red sideband Hamiltonian in Eq. (5) outperformed the
others. The result using Eq. (24) failed as expected since we
are far from its validity region determined by the resonance
� = ν. Our model in Eq. (29) is expected to lose accuracy, as
Eq. (30) would imply, for � = 0. Nevertheless, it was able
to maintain F > 98% throughout the period. In Fig. 7 we
set � = 0.1ν, which is already a bit too strong to ensure the

validity of the RWA leading to the red sideband Hamiltonian,
as can be seen. Interestingly enough, our result still managed
to maintain F > 98%, even though it was further from the
exact resonance ω̃ = ν.

V. FINAL REMARKS

To summarize, we were able to theoretically expand the
usage of the trapped-ion setup beyond sideband Hamiltonians
on two fronts. First, we adapted a protocol of reconstruction
of the motional state for the intermediate-intensity regime,
� = ν, allowing for a speed gain of a least a factor of 10.
The numerical results presented supported the advantage of
this result in the presence of a noise source, modeled here as
a dephasing channel acting on the electronic subspace of the
trapped ion.

Second, we were able to extend the known effective
Hamiltonian for the intermediate-intensity regime, � ∼ ν, in
the case of a laser that is not in exact resonance with the
electronic transition frequency, δ �= 0. Moreover, this result
presents a bridge between low- and intermediate-intensity
regimes, functioning as a good approximation of the trapped-
ion Hamiltonian in the whole range 0 < � � ν, provided we
adjust δ accordingly.

Furthermore, we hope that the results presented here,
which expand on the theoretical description of this system
in regimes not yet fully explored, will boost research on new
protocols and quantum operations in this important setup of
laser-driven trapped ions.
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