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ABSTRACT
In this work, we study quantum heat transport in a single trapped ion, driven by laser excitation and coupled to thermal reservoirs operating
at different temperatures. Our focus lies in understanding how different laser coupling scenarios impact the system dynamics. As the laser
intensity reaches a regime where the electronic and motional degrees of freedom of the ion couple strongly, traditional approaches using
phenomenological models for thermal reservoirs become inadequate. Therefore, the adoption of the dressed master equation formalism
becomes crucial, enabling a deeper understanding of how distinct laser intensities influence heat transport. Analyzing the heat current within
the parameter space defined by detuning and coupling strength, we observe intriguing circular patterns that are influenced by the vibrational
frequency of the ion and laser parameters and reveal nuanced relationships between heat transport and coherence, as well as phenomena
such as negative differential heat conductivity and heat rectification, offering insights into the thermal properties of this essential quantum
technology setup.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0245668

I. INTRODUCTION

The desire to build universal quantum computers1 has led
to a remarkable development of methods for controlling quantum
systems and, in addition, the creation of increasingly smaller and
more complex quantum devices. In order to have the level of con-
trol necessary for this application, it is important, among other
things, to understand how these quantum systems interact with
their environment.2 One of the efforts in this direction is that of
understanding nonequilibrium processes, e.g., transport of energy,
and how the response changes according to system or reservoir
properties.

On the other hand, few quantum technologies are as advanced
as the setup involving trapped ions interacting with lasers and cav-
ity fields.3–6 Ion traps enable precise control over state initialization,
dynamics, and system measurements. The possibility of arrang-
ing the ions in different spatial configurations, including 2- and
3d crystals, along with laser driving, opens the door to simulating
a vast number of condensed matter systems.7–10 In addition, the

capability to engineer reservoirs renders the trapped ion systems
ideal setups for investigating quantum thermodynamic cycles.11

Understanding transport in such controllable circumstances can
advance not only the theory of out-of-equilibrium systems and
many-body physics, but also provide insights for the development
of new technologies.12–28

In this work, we are interested in exploring the transport
response in varied coupling scenarios, linked to the variation of the
laser intensity employed for manipulating the trapped ion. This vari-
ation of the coupling strength makes it imperative to use the dressed
master equation (DME) formalism to achieve accurate, physical
results.29–33 In particular, we find an interesting relation approxi-
mately satisfied by the laser-ion coupling constant Ω and detuning δ,
as well as the trap frequency ν. This relation reads Ω2 + δ2 = (mν)2,
and its fulfillment approximately gives the optimized current. Sur-
prisingly, this relation is also related to local maxima or minima of
the leftover coherence in the steady state. In addition, we show the
controlled emergence of negative differential heat conductivity34–38

in this system, a phenomenon characterized by a nonmonotonic
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behavior of the current with respect to the temperature difference
between the two reservoirs. Finally, we studied the asymmetric char-
acter of the current39–41 with respect to the swap of reservoirs.
In particular, we studied how the rectification factor responds to
control parameter changes.

The paper is organized as follows. In Sec. II, we present the
model we are going to consider, giving a brief review of the theoret-
ical description of trapped ions, the treatment of the open quantum
system via the DME, and how to obtain the heat current. We pro-
ceed to present some numerical results in Sec. III in a wide range
of physical parameters. Finally, in Sec. IV, we summarize the results
and make some final remarks.

II. MODEL
We are interested in studying the properties of a single trapped

ion coupled to thermal reservoirs at different temperatures. A
trapped ion can be effectively characterized by its internal electronic
state and the position of its center of mass. Through the application
of selection rules and appropriate detunings, the electronic subspace
can be simplified into a two-level system.5 Similarly, by adjusting
the electromagnetic trapping fields, the motion of the ion’s cen-
ter of mass can be accurately portrayed as a harmonic oscillation
around an equilibrium point along the trap axis.5 The application
of the laser induces coupling between the electronic and motional
parts, and the Hamiltonian describing their interaction can be cast in
the form42

HS = νa†a + δ
2

σz +
Ω
2
[σ+eiη(a+a†) + σ−e−iη(a+a†)], (1)

where ν is the ion’s vibrational angular frequency, δ ∶= ω0 − ωL is
the detuning between the electronic transition frequency ω0 and the
laser frequency ωL, Ω is the coupling constant, and η is the Lamb-
Dicke (LD) parameter. The operator a (a†) annihilates (creates) a
vibration quantum, σ− (σ+) is the spin lowering (raising) operator,
and σz is the z Pauli operator, which also acts on the spin subsystem.
In this equation, and throughout the following, we adopt natural
units where, in particular, the reduced Planck constant h (i.e., h over
2π) and the Boltzmann constant kB are set to one.

In this work, we explore the nonequilibrium consequences
of introducing a temperature gradient across the ion under dif-
ferent coupling conditions. Typically, this temperature gradient is
achieved through reservoir engineering. At a theoretical level, we
capture the physics by subjecting both the electronic and motional
degrees of freedom to independent Markovian baths at a speci-
fied temperature TE and TM , respectively. Consequently, upon laser
illumination, the two subsystems are expected to exchange energy
through their laser-induced coupling, eventually settling into an
asymptotic state. The energy current induced by the two thermal
baths in this state is of particular interest to us. As we will see,
the magnitude of the current exiting one reservoir equals the one
entering the other in the asymptotic state. This scenario is depicted
in Fig. 1.

From an implementation perspective, the thermal bath for the
electronic degrees of freedom can be engineered by using dedi-
cated lasers that promote the coupling of the target ion to other
auxiliary ions and their common motion in the trap. As detailed
in Ref. 43, the spectral density of the resulting reservoir depends

FIG. 1. Schematic illustration of the system in consideration. A trapped ion (gray,
dashed-border rectangle) can be described by its motional (M) and electronic (E)
subsystems, represented by the left red circle and the right blue circle, respectively.
These can be approximated, respectively, by a quantum harmonic oscillator of
frequency ν and a two-state system of energy split ω0. The motional and electronic
subsystems can be coupled via a laser, with the coupling strength denoted by Ω.
By connecting thermal reservoirs at different temperatures TM and TE (red and
blue, solid-border rectangles) to the motional and electronic parts, respectively, it
is expected that the system will reach a stationary state with a constant flux of
energy given by the heat current JSS (purple arrow).

on various factors, including the ion number, the target ion loca-
tion, the laser detuning relative to the motional sidebands, and the
number of frequency components in the laser. Concerning the vibra-
tional motion, laser cooling and heating can be used to implement
effective thermal reservoirs. The interested reader can refer to Ref.
11 and the references therein. In Ref. 44, this approach is consid-
ered to promote energy transport in phonon-mediated spin–spin
interactions in crystals of trapped atomic ions. The physical picture
here is that laser cooling couples the vibrational mode to an infi-
nite number of photonic modes in the electromagnetic bath, thereby
creating an effective thermal bath for the vibrational degrees of
freedom.

The reservoirs are included in the dynamical description of the
system by means of the bath Hamiltonian21

HB = ∑
μ ∈{E,M}

H0
Bμ + Vμ, (2)

where

H0
Bμ =∑

k
ωμkb†

μkbμk, (3)

is the free Hamiltonian of the μth reservoir and,

Vμ = Aμ ⊗∑
k

gμk(bμk + b†
μk), (4)

is the respective interaction term with the subsystem μ ∈ {E, M}. We
consider that the system-reservoir interaction is weak and that reser-
voir correlations decay much faster than any significant time scale of
the system. In these conditions, we can use the usual Born-Markov
approximations. Regarding the specific form of the system operators
in Eq. (4), we will be considering AM = a + a† and AE = σx, which is
a common choice to describe energy exchange with thermal baths.
In this way, the dynamics of the system is given by the reduced den-
sity operator, ρ ∶= trB{ρSB}, which obeys the dressed master equation
(DME)2,29,30

dρ
dt
= −i[HS, ρ] +∑

μjk
ΓμjkDjk[ρ], (5)

APL Quantum 2, 016122 (2025); doi: 10.1063/5.0245668 2, 016122-2

© Author(s) 2025

 26 February 2025 14:47:21

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

where

Γμjk =
⎧⎪⎪⎨⎪⎪⎩

γμjk n̄μ(ωjk) ∣⟨k∣Aμ∣l⟩∣2, if ωjk > 0,

γμjk [1 + n̄μ(−ωjk)] ∣⟨k∣Aμ∣l⟩∣2, if ωjk < 0,
(6)

and

Djk[ρ] = Pk∣ j⟩⟨j∣ −
1
2
∣k⟩⟨k∣ρ − 1

2
ρ∣k⟩⟨k∣. (7)

Here, ∣k⟩ is the eigenvector of HS such that HS∣k⟩ = Ek∣k⟩, ωjk = Ej

− Ek, Pk = ⟨k∣ρ∣k⟩, n̄μ(ω jk) = (eω jk/Tμ − 1)−1, and γμjk are constants,
which depend on particularities of the chosen baths. Unless explic-
itly stated, we consider equal relaxation rates γμjk = γ. Only when
analyzing the phenomenon of current rectification do we consider
a case with different such rates.

Before proceeding, it is important to justify our use of the
DME instead of the more common phenomenological, local mas-
ter equation approach. To derive, for example, a local dissipator of
the form45

D[ρ] = γ(aρa† − 1
2
{a†a, ρ}), (8)

for the vibrational motion, one must neglect its coupling to any other
quantum system, except its own bath. In our case, this would cor-
respond to neglecting the electronic degree of freedom. When the
coupling constant Ω becomes much stronger than the decay rate γ,
the local master equation formalism begins to break down, as the
system is no longer separable. For instance, the reservoir coupled to
the motional part becomes indirectly coupled to the electronic part
via the laser-induced interaction between them.

When a system is placed in contact with reservoirs at differ-
ent temperatures, it is expected not to reach an equilibrium state but
rather a time-independent, asymptotic stationary state. In this state,
the total rate of energy change is zero, yet it can be split into con-
tributions with opposite signs, interpreted as a constant energy flux
from one reservoir to the other.13,18 The starting point to find the
heat current due to each of the reservoirs is to notice that the total
current reads

J ∶= − d
dt
⟨HS⟩ = −tr[dρ

dt
HS], (9)

= −∑
μjk

ωjk Γμjk Pk, (10)

where the minus sign indicates that the current is considered positive
when energy leaves the system. We can now split the summation
in μ ∈ {E, M} as J = JE + JM to obtain the desired current for each
reservoir. In particular, for the steady state denoted as ρSS, we have
dρSS/dt = 0 and, consequently, J = 0. In this scenario, we can write

JSS ∶= JE =∑
jk

ωjkΓEjkPk = −JM , (11)

where JE is the current between the electronic subsystem and its bath
and JM is the analogous current for the center-of-mass subsystem
and its bath. As noted earlier, both currents are equal in magnitude
in the steady state.

III. RESULTS
This section presents numerical simulations of the system in

Fig. 1 responding to a temperature gradient across various para-
meter regimes. All of the numerical results were obtained with the
use of the QuTiP framework46 for Python. We started by calcu-
lating ρSS from the DME in Eq. (5) and proceeded to calculate
the current using Eq. (11). For all the results presented here, the
Lamb–Dicke (LD) parameter was set to η = 0.05, and the dimension
of the space of states of the motional bosonic mode (frequency ν)
was truncated at N = 30 (truncated Fock basis). We experimented
with other values of the LD parameter inside the LD regime, η≪ 1,
and did not observe significant differences in the qualitative aspects
of the results presented here. We also experimented with positive
and negative values of the detuning δ. However, the current mag-
nitudes seem to only depend on ∣δ∣, with the current JSS varying
less than 0.1% between positive and negative detunings. Therefore,
without any generality loss, we will present only the results for
positive δ.

Figure 2 shows simulation results for reservoirs at tempera-
tures TE = 0.5ν and TM = 5ν, with a fixed detuning of δ = 0.8ν. The
top panel displays the normalized current, JSS/(γν), as a function
of the coupling constant Ω. Notably, the behavior of JSS is highly
nonmonotonic with respect to Ω, exhibiting a series of current
peaks interspersed with regions of current suppression. The bottom
panel shows the steady-state population pn in the truncated Fock
basis used to represent the vibrational state in the simulations for a

FIG. 2. Top panel: Steady-state heat current JSS as a function of the coupling
strength Ω for a fixed detuning δ = 0.8ν. The reservoir temperatures were set to
TE = 0.5ν and TM = 5ν. Bottom panel: Steady-state population of the 30 states
in the truncated Fock basis ∣m⟩ (with 0 ≤ m ≤ N = 30) for the bosonic motional
mode, corresponding to the vibrational degree of freedom of the trapped ions (with
frequency ν). This plot was obtained with Ω = 1.5ν, but similar results are obtained
for all values of Ω considered in the top panel plot.
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FIG. 3. Magnitude of the steady-state heat current JSS as a function of the detun-
ing δ and the coupling strength Ω. (a) TE = 0.5ν and TM = 5ν. (b) TE = 5ν and
TM = 0.5ν.

specific value of the Rabi frequency. It shows that the chosen num-
ber of elements in the basis, N = 30, is sufficient to yield accurate
numerical results.

In Fig. 3, we extrapolate the previous simulation for several val-
ues of δ and present the normalized current as a function of both
δ and Ω. For Fig. 3(a), the electronic and motional reservoirs were
set, respectively, at temperatures TE = 0.5ν and TM = 5.0ν, while for
Fig. 3(b), we have the inverse scenario. In both cases, the maximum
values of the current, the darker areas, form circular patterns in the
(Ω, δ) space. In addition, the currents are asymmetric, with stronger
maxima when the electronic part is coupled to the hot reservoir. This
asymmetry will be further explored shortly.

We now take a closer look at the appearance of the circular pat-
terns. For each fixed value of δ, we find the critical Ω that satisfies
dJSS/dΩ = 0. The results are shown in Fig. 4, where we can see that
these local maxima tend to occur close to the circular sectors,

δ2 +Ω2 = (mν)2, (12)

where m = 1, 2, . . . represents a natural number. This analysis con-
firms that, with the exception of a few isolated regions, particularly
for m = 1, such maxima of the current align closely with these
circular sectors, as anticipated in Fig. 3, confirming a significant
relationship between the parameters.

FIG. 4. Location of the local maxima (at constant δ) of ∣JSS∣ (dashed purple
lines) in the (Ω, δ) space. The circular sectors, δ2

+Ω2
= (mν)2, m = 1, 2, 3,

are depicted as solid black lines. (a) TE = 0.5ν and TM = 5ν. (b) TE = 5ν and
TM = 0.5ν.

Interestingly, it was shown recently47 that along the first circu-
lar sector, δ2 +Ω2 = ν2, the trapped ion Hamiltonian can be approx-
imated, in a unitarily rotated frame, to that of the Jaynes–Cummings
model. While this result might appear to simplify the problem
entirely, suggesting that the dynamics being fully described by the
Jaynes–Cummings model would naturally lead to simple or intu-
itive analytical expressions for the heat current, this is not the case.
Although the Jaynes–Cummings model is exactly solvable, its emer-
gence in the present setup under the resonance δ2 +Ω2 = ν2 occurs
within a nontrivial transformed frame.47 This picture relies on care-
fully chosen local and bipartite unitary transformations, leading to
complex calculations even for simple observables. In particular, the
expression for the heat current in Eq. (10) becomes a highly intricate
form, comprising infinite sums of non-intuitive and cumbersome
terms.

Regarding the other circular sectors [Eq. (12) with m ≥ 2], the
underlying physical mechanism for their emergence is expected
to be similar to the case of m = 1, reported in Ref. 47. Specifi-
cally, these circular conditions δ2 +Ω2 = (mν)2 are likely associ-
ated with the emergence of effective Hamiltonians that involve m
phonon transitions [am and (a†)m], leading to generalizations of
the Jaynes–Cummings model. This is consistent with the fact that ν
denotes the vibration frequency (phonon mode). Deriving effective
Hamiltonians for these cases requires identifying the appropriate
unitarily transformed frames where the effective dynamics arise
upon resonance, as discussed in Ref. 47 for m = 1. To the best of
our knowledge, no such frames or effective Hamiltonians have yet
been reported for m ≥ 2, which makes this an interesting research
problem by itself.

Another important feature of this plot is that the widths of
the regions where the current is appreciable, specifically around
δ2 +Ω2 = (mν)2, become narrower as m increases. This trend can
also be seen in the top panel of Fig. 2. The key to understanding
this behavior again lies in the m − phonon transitions, represented
by am and (a†)m. These transitions arise from an expansion in η of
the exponential factor exp[±iη(a + a†)], which appears in the inter-
action part of the Hamiltonian in Eq. (1). The contribution from
the m − phonon terms is scaled by a factor of ηm. Since η is typically
much smaller than one, the resonance condition δ2 +Ω2 = (mν)2

corresponds to relatively weak m − phonon transitions, which lead
to sharp lines. This sharpness occurs because, as soon as we deviate
from the exact values of δ and Ω that satisfy the resonance condition,
the dynamics are significantly perturbed. This explains the observed
narrowness of the lines.

Another interesting result connected to the circles in Eq. (12)
relates to the coherence that still persists in the asymptotic state as
the result of the interplay between coherent (Hamiltonian) and inco-
herent (thermal) dynamics. To quantify this quantum resource, we
choose the relative entropy of coherence evaluated in the free basis
F = {∣e, n⟩, ∣g, n⟩}. It reads48

C(ρSS) = S(ρdiag
SS ) − S(ρSS), (13)

where S is the von Neumann entropy, and ρdiag
SS has the same

diagonal elements of ρSS in the F basis and zeros in all other
positions.

In Fig. 5, we present a comparison of the relative entropy of
coherence C(ρSS) and the steady-state current JSS as a function of Ω

APL Quantum 2, 016122 (2025); doi: 10.1063/5.0245668 2, 016122-4

© Author(s) 2025

 26 February 2025 14:47:21

https://pubs.aip.org/aip/apq


APL Quantum ARTICLE pubs.aip.org/aip/apq

FIG. 5. Magnitude of the steady-state current JSS and relative entropy of coherence
C of the steady state, calculated in the free Hamiltonian basis F , as a function of
Ω and for fixed δ = 0.8ν. (a) TE = 0.5ν and TM = 5ν. (b) TE = 5ν and TM = 0.5ν.

and for fixed δ = 0.8ν. In Fig. 5(a), we have temperatures TE = 0.5ν
and TM = 5ν, while in Fig. 5(b), we have TE = 5ν and TM = 0.5ν.
We observe an intriguing correlation between current and coher-
ence. In the first case, there appears to be a negative correlation,
with coherence decreasing as current increases. In contrast, the sec-
ond case exhibits a positive correlation, where peaks in the current
align with peaks in coherence. Once again, we observe a pronounced
asymmetry regarding the direction of the temperature gradient.

To further explore the relationship between current and coher-
ence in the asymptotic state, we plot the coherence as a function
of δ and Ω, following the approach used for the current in Fig. 3.
The results are presented in Fig. 6. Similar to the current, the figures
reveal circular patterns in this parameter space. Notably, the correla-
tion between current and coherence observed in Fig. 5 appears to be
consistent. Specifically, when the electronic component is coupled
to the cold reservoir [Fig. 6(a)], peaks in the current correspond to
abrupt decreases in the relative entropy of coherence. Conversely, in
the opposite scenario [Fig. 6(b)], current peaks are associated with
increases in the coherence present in the steady state.

Having established sound connections between coherence and
current, we now deepen our understanding of the current by study-
ing how the trapped ion behaves in response to varying temperature
gradients. While it is generally expected that the current magnitude

FIG. 6. Relative entropy of coherence C of the steady state, calculated in the free
Hamiltonian basis F , as a function of δ and Ω. (a) TE = 0.5ν and TM = 5ν. (b)
TE = 5ν and TM = 0.5ν.

will increase monotonically with temperature bias, this is not always
the case. Some systems exhibit what is known as negative differential
conductivity (NDC).34–38

In the following, we set the temperature of the motional reser-
voir to TM = 5ν and vary the temperature of the reservoir coupled to
the electronic part, TE. In Fig. 7, we present results for a fixed detun-
ing δ = 0.8ν and different values of the Rabi frequency Ω. In all cases,
we observe the onset of NDC, where the current no longer increases
as the temperature gradient, ΔT ≡ TM − TE, increases. However,
for smaller temperature differences, the current exhibits the linear
behavior J ∝ ΔT, consistent with Fourier’s law. Similar NDC behav-
ior is observed for different values of δ and Ω, indicating a consistent
response across these parameters. In addition, when ΔT ≈ 0, the cur-
rent behaves as expected, with heat flowing from the hot to the cold
reservoirs, as indicated by the change in the signal of JSS.

Negative differential conductivity (NDC) is typically associated
with the onset of nonlinearities. This well-established fact is exem-
plified by the well-known result that coupled harmonic oscillators
cannot exhibit NDC.36,38 The results shown in Fig. 7 can thus be
understood as arising from the inherent nonlinearity introduced by
the laser-driven two-level system, which leads to the exponential
function exp[±iη(a + a†)] in the interaction part of the Hamilto-
nian, as given in Eq. (1). At sufficiently large temperature gradients,
higher energy levels become populated, making the contribution of
nonlinearity appreciable, leading to the observed NDC.

The next and final aspect of transport we examine in this work
is the onset of current rectification20,39–41 and its sensitivity to varia-
tions in the same parameters as before, which are tuned through the
control of the laser—specifically, the detuning δ and the coupling
constant Ω. When the reservoirs are swapped, the current direc-
tion reverses, but an asymmetry in current magnitude may emerge,
with a stronger flow in one direction. This can be noted by compar-
ing the magnitudes of JSS in Figs. 3(a) and 3(b). A quantifier of this
asymmetry is found in the so-called rectification factor20

R ∶= ∣J→∣ − ∣J←∣
max{∣J→∣, ∣J←∣}

, (14)

where J→ is the current when the cold reservoir is coupled to the
electronic part, and J← is the current in the opposite scenario.

FIG. 7. Heat current JSS as a function of the temperature bias ΔT ≡ TM − TE .
For each line, the coupling strength was set to Ω = 0.4ν (dashed gray), Ω = 0.8ν
(solid purple), Ω = 1.5ν (dotted black), and Ω = 1.9ν (dashed–dotted cyan). The
detuning was set to δ = 0.8ν. The temperature of the motional reservoir was fixed
at TM = 5ν.
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From its definition in Eq. (14), we see that the rectification factor
is bounded by ∣R∣ ≤ 1. Specifically, R = 0 indicates symmetric cur-
rent flow, while ∣R∣ = 1 represents complete rectification, where the
current flows only in one direction, as in a perfect diode.

Up to this point, we have considered equal relaxation rates
for both reservoirs, γEjk = γMjk = γ, in Eq. (6). Next, we examine
the effects on the rectification factor of introducing different such
rates. In Fig. 8, we present the rectification factor R as a function
of the coupling strength Ω for a fixed detuning δ = 0.8ν. The three
curves shown correspond to a fixed electronic reservoir relaxation
rate γEjk = γ while varying the relaxation rates for the motional reser-
voir. Specifically, we considered the cases γMjk ≡ γM = 0.5γ (dashed
gray), γM = γ (solid purple), and γM = 2γ (dashed–dotted cyan). The
locations of the circular sectors are marked by dotted vertical lines.
It can be seen that the rectification factor is more affected by changes
in the relaxation rates in some regions than in others. In particular,
in the first circular sector (first dotted vertical line), an increase in the
relaxation rate γM leads to more negative values of R. Conversely, in
the third circular sector, a decrease in γM facilitates negative recti-
fication. There are also small regions where the curves cross, which
remain robust to small changes in the relaxation rates.

This phenomenology suggests that the response of R to varia-
tions in the thermal relaxation rates, combined with the flexibility
offered by lasers of different intensities and detunings, opens up
avenues for future investigations. These studies could focus on
optimizing these parameters to achieve the targeted values of the rec-
tification factor. This approach could further broaden the potential
applications of this system for thermal devices39 and nonequilibrium
thermodynamics.49

To gain a deeper understanding of how rectification depends
on the parameters controlled by the laser properties, we once again
fix the dissipation rates as γM = γE = γ and present a simulation of
the rectification factor for various values of δ and Ω, as shown in
Fig. 9. Again, circular patterns tend to emerge across the parameter
space, but now the phenomenology is more complex. We observe
a tendency toward negative rectification factors near the first circu-
lar sector. This trend appears in the second sector as well, though
with sharper variations in R close to the circular boundary. When
approaching the third circular sector, however, the step size used in

FIG. 8. Rectification factor as a function of the coupling constant Ω for different
decay rates. For each line, the decay rate of the reservoir coupled to the motional
part was set to γM = 0.5γ (dashed gray), γM = γ (solid purple), and γM = 2γ
(dashed–dotted cyan). The decay rate for the electronic reservoir was always set
to γE = γ. The hot and cold reservoirs were fixed, respectively, at temperatures
TH = 5ν and TC = 0.5ν.

FIG. 9. Rectification factor R as a function of the detuning δ and the coupling
strength Ω. The hot and cold reservoirs were set, respectively, at temperatures
TH = 5ν and TC = 0.5ν.

the numeric discretization did not have enough resolution for us to
make a precise observation. In fact, as it can also be observed in the
other figures, it appears that the variations in the features studied
here become increasingly sharper for the outer circular sectors. This
can ultimately constrain numerical studies for large integers m in
Eq. (12), since finer and finer discretization steps will be needed.

IV. FINAL REMARKS
We investigated quantum heat transport through a trapped ion

in various regimes of the coupling strength Ω and ion-laser detun-
ing δ. The heat current was driven by one reservoir coupled to the
electronic part of the ion and another coupled to the motional part.
Given that we considered couplings well into the strong regime, the
use of the dressed master equation (DME) formalism was necessary.
The current was calculated for the steady state of the DME.

We found that the heat current forms an intriguing circular
pattern in the (δ, Ω) space. The current maxima fall close to the cir-
cles δ2 +Ω2 = (mν)2, for an integer m, where ν is the trap frequency.
Furthermore, we observed that the coherence in the steady state, cal-
culated with the decoupled basis, exhibits similar circular patterns,
but with a notable distinction: it is not always the maximum that
aligns with the circular lines. When the hot reservoir is coupled to
the motional part, we observed that current maxima correlate with
sudden drops in the residual coherence. Conversely, when the hot
reservoir is coupled to the electronic part, we observed sudden peaks
of leftover coherence when the current was maximal.

Other properties we investigated included differential heat
conductivity and heat rectification, where we observed a rich phe-
nomenology as the coupling strength Ω was varied. This may inspire
applications such as thermal rectifiers and thermal diodes within
this pivotal quantum technology setup. Finally, our study lays the
foundation for further investigations into heat transport across
controlled quantum systems.
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